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Our method, READ Avatars allows for the creation of photo-realistic and lip synchronized video from
audio and a reference video, with control over emotion. The same audio can be used to generate videos in
multiple emotions. The intensity of each emotion can be directly specified, allowing for fine-grained control
over the output.

Abstract

We present READ Avatars, a 3D-based approach for
generating 2D avatars that are driven by audio input
with direct and granular control over the emotion.
Previous methods are unable to achieve realistic an-
imation due to the many-to-many nature of audio to
expression mappings. We alleviate this issue by intro-
ducing an adversarial loss in the audio-to-expression
generation process. This removes the smoothing

effect of regression-based models and helps to im-
prove the realism and expressiveness of the generated
avatars. We note furthermore, that audio should be
directly utilized when generating mouth interiors and
that other 3D-based methods do not attempt this.
We address this with audio-conditioned neural tex-
tures, which are resolution-independent. To evaluate
the performance of our method, we perform quanti-
tative and qualitative experiments, including a user
study. We also propose a new metric for comparing
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how well an actor’s emotion is reconstructed in the
generated avatar. Our results show that our approach
outperforms state of the art audio-driven avatar gen-
eration methods across several metrics.

1 Introduction

Generating convincing talking head video is a highly
desired capability in various applications, such as
film and television dubbing, video games and photo-
realistic video assistants. While significant progress
has been made in this area [3, 8, 12, 15, 16, 21, 25, 28,
30–32, 36, 39, 42], most existing methods produce ei-
ther low-quality but accurate lip sync using 2D mod-
els [3, 25, 30, 36] or high-quality but inconsistent lip
sync using 3D models [15, 16, 21, 31, 32, 39]. We hy-
pothesize that two key factors have prevented the de-
velopment of models that are both high-quality and
lip synchronized. The first is that audio to expression
is a many-to-many mapping. A given audio can cor-
respond to many lip shapes, and the same lip shapes
can produce different audio due to factors such as
the larynx. The second factor is that while 3D mod-
els improve the visual quality by introducing strong
priors, they struggle to represent complex lip shapes
and do not model the mouth interior (see Figure 2).

Furthermore, it is desirable to introduce additional
signals, such as emotion, to generate more realistic
and believable video, and to offer users a level of con-
trol over the outputs. A few prior works attempt
this [12, 13, 15, 24, 37]. These methods usually either
consider emotion as discrete categories [15,37], which
gives semantic control but lacks granularity, or learn
latent encodings of emotion [12, 13, 24] which allow
for fine-grained control but is not semantic and re-
quires selecting emotions from other sources (video
or audio).

In this paper, we introduce READ Avatars, a
method for generating talking head video with direct
and granular control over emotion, while achieving
high levels of lip sync, emotional clarity, and visual
quality. We build upon 3D-based approaches, using
a morphable model [20] as an intermediate represen-
tation of the face and deferred neural rendering [32]
to achieve high visual quality. To address the above

issues causing poor lip sync in 3D models, we propose
two novel components. First, we add an adversarial
loss to the audio-to-expression generator to alleviate
the many-to-many mapping issue. Second, we over-
come the challenge of representing complex lip shapes
and mouth interiors with a morphable model by con-
ditioning a neural texture on audio, encoding audio
features on the surface of the mesh using a resolution-
independent neural texture based on a SIREN net-
work [29].

In summary our contributions are:

• A novel neural rendering algorithm that lever-
ages neural textures, operates directly on UV
coordinates, and can be conditioned on audio,
improving the mouth interior.

• The incorporation of a GAN loss into the audio-
to-expression network to improve the results
by solving the many-to-many issue of audio-to-
expression generation.

• A new metric for determining how well an actor’s
emotions are captured and reconstructed.

2 Related Works

2.1 Unconditional Audio-Driven Face
Models

The task of generating lip-synced video from audio
alone, or else from audio and a reference video, known
as unconditional audio-driven video generation, has
been widely studied and has numerous practical ap-
plications, such as dubbing and digital avatars. There
are two broad categories of unconditional models:
those that use 3D priors and those 2D models that
do not.

2D Models: Many approaches to synthesizing
talking head videos from audio operate directly in
the image or video domain [3, 25, 30]. These meth-
ods typically employ an encoder-decoder architec-
ture. ATVG [3] uses audio to control 2D landmarks,
which are then used to generate video with attention
to highlight the parts that need editing. Wav2Lip [25]
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significantly improves lip sync accuracy by minimiz-
ing the distance between the audio and generated
video according to a pre-trained lip sync detection
network. While the lip sync is excellent, the visual
quality is poor. Recently, a context-aware trans-
former [30] was applied to this problem, with an
audio-injected refinement network that significantly
improves the visual quality. However, all 2D based
models to date suffer from limited visual quality. In
contrast, our 3D-based method produces much higher
quality videos.
3D Guided Face Models: Using explicit 3D

supervision, ultra high-quality face models driven by
various signals have been created [15, 16, 18, 21, 32,
34, 39]. These methods simplify facial synthesis by
modeling the underlying 3D scene with a small set
of parameters, such as a 3DMM [2, 5], that can be
directly controlled. Despite their high visual qual-
ity, these models often lack expressiveness due to the
many-to-many mapping problem and the limited lip
expressions of the underlying geometry.
Puppetry methods [15,16], and motion models [12,

28] are able to somewhat solve the many-to-many
issue by using a source actor to drive the expressions.
This provides a signal, the source actor’s expressions,
which is much closer to one-to-one with the target
actor. However, it is often undesirable to require a
source actor to be filmed, and the resulting video
processed every time the model is used. Actor-free
methods such as ours are significantly more scalable.
Implicit models [7, 8, 23,43] augment geometry using
MLP offsets, allowing for more expressive lip shapes
but do not solve the many-to-many problem.
Concurrent work [31] addresses both the many-to-

many issue, and the mouth interior using memory
networks. However, they rely on reusing explicit pix-
els from the mouth region, which leads to jitter in the
final videos.

2.2 Audio-Driven Face Models with
Emotional Control

Only a small number of works have attempted to de-
velop models that allow for explicit control of stylistic
attributes, such as emotion, in generated talking head
videos.

MEAD [37] introduces an audio-driven model with
control over emotion. They trained a network to map
audio to landmarks and another to convert input im-
ages to the desired emotion, and then used a UNET-
based network to combine the upper face with the
desired emotion and the generated landmarks to pro-
duce the final image. This method can control emo-
tion and intensity, but lacks temporal coherence due
to its frame-by-frame nature and has suboptimal lip
sync. EVP [13] improves upon MEAD by adding an
emotion disentanglement network to separate content
and emotion in the audio and using a face-synthesis
network based on vid2vid [38] to produce higher qual-
ity videos with temporal consistency. However, the
lip sync and emotional clarity were not always sat-
isfactory. MEAD and EVP are the most similar to
our work. These landmark based models are unable
to produce as high quality results as 3D models, they
also suffer from unnatural motion without the strong
priors of a 3DMM.

Kim et. al. [15] propose a 3D based model with
control over style capable of producing highly realis-
tic videos. The model uses a style translation net-
work to convert the animation style of a source actor
to that of a target. This, however, requires train-
ing a neural renderer for every emotion and a style
translation network for every pair of emotions, which
quickly becomes intractable for many styles. Simi-
larly EAMM [12] uses a source actor to generate the
emotional style, and a motion model to produce the
lip motion. This method is unable to model the emo-
tion in the mouth region, and as the emotional style
is directly copied from a source actor, the result can
appear unnatural on the target actor. NED [24] also
manipulates the emotion of a source actor effectively
using an emotional manipulation network in the pa-
rameter space of a 3DMM. Their method can seman-
tically control the emotion, but also suffers from some
unnatural motion owing to a mismatch of emotional
style due to the generality of the model.

3 Method

Our method consists of three stages: fitting a 3D
Morphable Model (3DMM) to the input videos (Sec-
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Figure 1: The READ Avatars pipeline. We train 3 separate networks. The first converts audio into
expressions (Section 3.2). After rasterization, the second, MLP-based network converts the uv coordinates
to neural texture features, conditioning on audio (Section 3.3). The final, UNET-based network takes this
rasterized neural texture, and the real video frame, and outputs lip synchronized and emotional video frames.

tion 3.1), generating morphable model parameters
from audio using adversarial training (Section 3.2),
and training an audio-conditioned deferred neural
renderer to produce the final, photo realistic video
outputs (Section 3.3). These steps are shown in Fig-
ure 1.

In the first stage, we fit a 3D Morphable Model
[2, 19, 20, 44] to the input videos using an exten-
sion of the Face2Face monocular reconstruction algo-
rithm [34], with the modification of including blink
blendshapes for both eyes. We use the implemen-
tation provided in Neural Head Avatars [7]. In the
second stage, we train a neural network inspired by
Pix2Pix [11] to generate morphable model param-
eters from audio using adversarial training. This
allows us to generate realistic animation sequences,
even in areas that are not well correlated with au-
dio. At this stage, we introduce a fine-grained emo-
tional label. In the final stage, we train an audio-
conditioned deferred neural renderer [33]. Our model
uses a SIREN MLP [29] to directly map uv coordi-
nates to texture features, replacing the learned neural
texture of previous work [33], and making the task of
audio conditioning much easier.

3.1 Monocular Reconstruction

In the first stage of our method, we aim to find a low-
dimensional set of parameters that can model a video

sequence V = (V0, . . . Vn). For this purpose, we use
the FLAME model [20], which represents explicit 3D
geometry using a combination of skinned joints and
blendshapes. The FLAME model can be represented
as a function V that maps a set of parameters for
shape β, expression ψ, and joint rotations θ onto 5023
3D vertices:

V : R|β|×|θ|×|ψ| → R5023×3 (1)

A similar function is used to map a set of texture
parameters α onto UV-based 2D textures.
We model the rendering process using a full per-

spective camera that projects a mesh M onto the
image plane according to:

Î = Π(M,K,R, t) (2)

Where R and t are the rotation and translation
of the mesh in world space, and K is the camera in-
trinsic matrix. We also model the lighting as distant
and diffuse, using 3-band spherical harmonics with
parameters γ. If we define π = (α, β, θ, ψ, γ,R, t,K)
as the set of all parameters, then our objective is to
find the optimal π̃ that best fits a given image.

To fit the FLAME model to our videos, we adopt
the tracking model of Neural Head Avatars [7], which
is based on Face2Face [34]. This model uses differ-
entiable rendering in Pytorch3D [26] to minimize the
L1 distance between real and rendered frames, with
statistical regularization over the parameters.
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We assume that shape, texture, and lighting are
fixed for a given actor, as our data is captured un-
der controlled conditions. Therefore, we can first
estimate πfix = (α, γ,K), the parameters that are
fixed across all videos for a given subject. These pa-
rameters are then fixed for all frames in all videos
of the same subject. We can then estimate πvar =
(θ, ψ,R, t) on a per-frame basis. These parameters
are then the target of the audio-to-parameter gener-
ator.

3.2 Audio-to-Parameter Generator

The goal of our method is to animate photo-realistic
avatars using audio as the control signal. Pre-
vious approaches based on 3D Morphable Models
[15, 18, 32, 39] use audio-to-parameter generators to
puppeteer a target actor using audio or a source
video. These methods rely on neural networks with
regression losses to generate a subset of the parame-
ters. Such methods, however, suffer from the many-
to-many issue when mapping audio to expressions,
as multiple, equally-valid expressions can come from
the same audio. Regression based losses mean that
weakly correlated parameters such as upper face mo-
tion is almost entirely averaged out, while even highly
correlated parameters such as the lip and jaw are
over-smoothed. To address these issues, we propose
an audio-to-parameter generator based on a condi-
tional GAN [6]. Our model is similar to Pix2Pix [11],
using a combination of L1 loss for low frequency parts
of the data and an adversarial loss for increased real-
ism.
The input of this network is a section of audio rep-

resented as MFCC coefficients, A, together with an
explicit emotion label. The window size of the MFCC
is selected to be a multiple of the video frame rate.
We use an explicit emotion labeling system to in-
troduce emotion into the generated parameters. For
N emotions, we use an N − 1 dimensional label, C,
with neutral emotion represented as a zero vector (ab-
sence of emotion). Each other emotion is assigned to
a dimension and scaled by intensity, with the maxi-
mum intensity being 1. This continuous label allows
for fine-grained control over the emotion. We dis-
tribute the label over the time dimension to obtain

Figure 2: An example of a typical failure in the
monocular reconstruction method. (Left): The in-
put frame, (right): the reconstruction. Note how
FLAME model lacks the expressiveness to capture
certain mouth shapes, in this case an ”O”.

C = (C0, . . . , Cn). This label is concatenated with
the MFCC audio features and serves as the input to
the audio to expression generator Ga, which produces
the target parameters for each frame (π0, . . . πn).

(π0, . . . πn) = GA(A,C) (3)

The discriminator is conditional, and takes either
the real or generated parameters, together with the
audio and emotional label and predicts if the given
parameters are real or generated.

Both the generator and discriminator networks use
an encoder-temporal-decoder model, projecting the
audio features into a high-dimensional latent space
via a fully connected layer followed by an LSTM [10]
and a fully connected decoder to map from this latent
space to the parameters. We optimize the objective:

L = L1 + λGANLGAN + λvelLvel (4)

where L1 is the ℓ1 distance between the real and
predicted parameters, LGAN is the adversarial loss
and Lvel is an ℓ1 distance between the velocities of
the output animation. The velocity loss is known
to improve the temporal consistency of speech-driven
animation [4]. Each λ is a relative weight, we use
λGAN = 0.02 and λvel = 100.
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Table 1: Quantitative comparisons to state-of-the-art. We compare visual quality using FID, lip sync
with LSE-D/C [25] and emotional reconstruction with our metrics A/V-EMD. We compare our results with
ATVG [3], MEAD [37] and Audio-driven Emotional Video Portraits [13] (EVP)

Method LSE-C ↑ LSE-D ↓ FID ↓ A-EMD ↓ V-EMD ↓
ATVG [3] 5.705 8.731 120.040 0.160 0.239

MEAD [37] 4.080 10.569 38.015 0.974 0.113

EVP [13] 4.061 11.514 43.972 0.119 0.126

Ours 4.431 10.157 13.600 0.0686 0.093

3.3 Audio-Conditioned Neural Ren-
derer

We next consider how to invert the parametric model
fitting and produce photo-realistic video. Given a
set of parameters (πi) corresponding to a video V,
we aim to reproduce the video as faithfully as possi-
ble. We build upon the idea of neural textures [33],
jointly optimizing an image-to-image deferred neural
renderer, and a neural texture defined in UV space.
However, we find that the FLAME model is not ex-
pressive enough to represent complex lip motions (see
Figure 2), and that neural textures alone are not
sufficient to compensate for this. Furthermore, the
FLAME mesh provides no information about the in-
terior of the mouth including the tongue and teeth.

To address this issue, we propose audio-
conditioned neural textures. The aim is to encode
audio information on the surface of the mesh to al-
low for more complex lip shapes and mouth interiors
to be learned. We replace the static, learned neural
texture with a SIREN MLP [29] texture network T ,
which maps a uv coordinate of the rasterized meshes
directly to a feature vector. This bypasses the need
for texture lookup which is slow and limits the reso-
lution of the neural textures. The use of a network
also allows us to easily condition on audio by simply
concatenating audio features to the uv coordinates.

We do not want the audio in the network to be
biased by emotion or identity, as this will prevent us
easily changing the emotion of the generated videos.
To remove such information, we use the output of
a Wav2Vec2 network [1, 40] pretrained to predict
phoneme probabilities at a 50 fps. The 50 most com-

mon phonemes comprise over 99% of the audio data,
therefore we restrict the features to these only. Next,
we resample these probabilities to 60 fps, twice the
frame rate of the video. We take a window of W
frames centered at the target video frame and use a
small neural network A : R2W×50 to encode the au-
dio over this window into a single vector aenc ∈ RNa ,
where Na is the dimension of the encoded audio and
is a hyperparameter. The encoded audio vector is
then used to condition the neural texture.

The audio encoder consists of several fully con-
nected layers, followed by temporal convolutions, a
reshaping layer that removes the time dimension, and
a final fully connected decoder. The now encoded au-
dio vector aenc is concatenated with the UV coordi-
nates obtained during rasterization, which serves as
the input to our texture network.

The output of the texture network is a multi-
channel image, which appears as a rasterization of the
mesh with a neural texture. This texture encodes au-
dio information on the surface. Similar to [33], we use
a 16-channel neural texture, enabling representation
of higher-order lighting effects. This rasterized image
is then passed through a UNET [27] based deferred
neural renderer R, which produces a photorealistic
final frame, leveraging the audio features encoded on
the mesh.

To address the issue of jitter in the final video,
we include additional renderings for the frames in a
window of length WR centered on the target frame.
These additional renderings are based on the ras-
terized UV coordinates of the parameters from the
frames on either side of the target frame. This results
in an input with 16 + 2WR channels for the UNET
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Figure 3: The input to the decoder network consists
of a rendered neural texture and a real frame with a
border of black pixels. Note that the texture cannot
represent the mouth interior, but it is generated by
the decoder.

decoder, which is able to smooth out the jitter over
a window of frames. We have found this approach to
be effective in reducing jitter in the final video.

In order to produce realistic and temporally con-
sistent background in our videos, we blend the out-
put of our texture network V̂t with the original video
frames Vt. We do this by using the alpha channel
from the rendered mesh as a mask to separate the
foreground and background. The foreground mask,
α is expanded by a fixed number of pixels to obtain
αexp. This expanded mask is zeroed out of the real
frame and the foreground mask α is used to fill in
these pixels with the rendered mesh. This process
gives an input consisting of the rendered mesh in the
real frame, with a border that the decoder can in-
paint. This is best shown in Figure 3.

V ∗
t = αV̂t + (1− αexp)Vt (5)

To train the audio encoder, texture network, and
deferred neural renderer, we optimize the following
objective function end-to-end:

L(V ∗, V ) = λ1L1 + λVGGLVGG + λGANLGAN (6)

Here, L1 is the ℓ1 distance between the real and
generated frames, LV GG is a VGG-based style loss
[14], and LGAN is an adversarial loss. The hyperpa-
rameters λ1, λVGG, and λGAN are used to weight the
importance of each loss. We use λ1 = λVGG = 1 and
λGAN = 0.01.

3.4 Implementation Details

To prepare the data for our method, we first crop
every frame to a square shape of 256 pixels. We do
this by estimating a bounding box for each frame
with padding, then finding the smallest square that
covers the union of these boxes. We reshape this
square to the desired resolution. We implement our
pipeline in Pytorch and Pytorch3D. Our models are
trained on a single NVIDIA RTX3080 graphics card.
All networks are optimized using Adam [17] with a
learning rate of 0.0001. The renderer is trained for
5 epochs, taking about 15 hours, while the audio-to-
expression generator is trained for 10 epochs taking
around 5 hours. We use the LSGAN formulation for
all adversarial training [22].

4 Results

4.1 Dataset

We use the MEAD dataset [37] for our experiments,
which includes 60 actors (both male and female)
speaking 30 sentences in 8 different emotions at 3
levels of intensity, recorded from multiple angles.
For this work, we only use the front-facing camera
footage. We follow the train-test split outlined in
MEAD and train models for 4 of these subjects. Fig-
ures ?? and 7 show a selection of results coming from
our method, across multiple emotions and intensities.

4.2 Quantitative metrics

In order to evaluate the performance of our method,
we consider three qualities: visual quality, lip sync,
and emotional clarity.

For visual quality, we use the Fréchet Inception
Distance (FID) metric to measure the similarity of
the generated frames to the ground truth. We crop
the frames tightly around the face region in order to
avoid biasing the results towards our method, which
uses the ground truth background. To measure lip
synchronization, we use the Lip Sync Error (LSE)
metrics introduced in wav2lip [25]. These metrics are
calculated using a pre-trained syncnet and include

7



Figure 4: We compare our results to those of MEAD [37] and EVP [13]. Our results are of much higher
visual quality that those of MEAD, the zoomed in regions demonstrate that our method produces more
convincing and accurate emotions compared to EVP.

LSE-D, which measures the minimum distance be-
tween audio and video features, and LSE-C, which
measures the confidence that the audio and video are
synchronized. To measure emotional clarity, it is not
enough to measure differences at the frame level, as
the intensity of emotion naturally varies over a video.
We therefore, introduce a new metric for emotional
clarity that measures the differences between distri-
butions of emotion. This metric is based on a pre-
trained EmoNet model [35]. We predict the valence
and arousal for each frame, and compare the distri-
butions of these values between the generated and
ground truth videos. We approximate the distance
between these distributions using the Earth Movers
Distance, and compute this distance for each subject
and emotion separately, taking the average to obtain
the valence Emotional Mean Distance (V-EMD) and
arousal Emotional Mean Distance (A-EMD) metrics.

4.3 Comparisons to State-of-the-Art

We compare our method to several state-of-the-art
audio-driven avatar models. Our main comparisons
are with Audio-Driven Expressive Video Generation

(EVP) [13] and Multimodal Emotion-aware Dataset
(MEAD) [37]. MEAD uses an audio-to-landmark
LSTM, an emotion transformer to alter the audio-
driven landmarks to any given emotion, and a fi-
nal UNET-based model to produce output frames
from the emotional landmarks. AudioDrivenEVP
improves on this approach by designing a disentan-
glement model to separate audio into emotion and
content, which is then used with a landmark align-
ment method to control for pose, and a video-to-video
network that produces high-quality and temporally
stable video from landmarks. We also compare to
ATVG [3], a 2D-based method that excels in lip syn-
chronization but has poor visual quality, and is un-
able to edit emotion.

Quantitative: The results of these comparisons
are shown in Table 1. Our results outperform all
competitors on visual quality (FID) and emotional
reconstruction (A/V-EMD). While our method is not
able to reach the lip-sync quality of the unconditional
ATVG [3], it has far better visual quality and emo-
tional clarity. We outperform both methods capable
of controlling emotion: MEAD [37] and EVP [13] on
lip sync.
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Table 2: Results of the user study. We ask users to select their preference between our video and each of the
competitors for four criteria. Where ours is preferred strongly (weakly) we denote the result ++ (+), where
there is no preference, 0 and where the other method is preferred strongly (weakly), −− (−). The data in
all but the rightmost column is in percentages. Note the data is rounded and may not add to 100%.

Statement −− − 0 + ++ mean
Ours ¿ MEAD (lip-sync ) 1 12 14 28 44 +1.02

Ours ¿ MEAD (visual quality) 0 3 9 23 65 +1.49
Ours ¿ MEAD (naturalness) 1 1 15 23 65 +1.39
Ours ¿ MEAD (emotion) 1 3 21 36 38 +1.06
Ours ¿ EVP (lip-sync ) 7 16 22 42 11 +0.50

Ours ¿ EVP (visual quality) 2 22 23 42 11 +0.39
Ours ¿ EVP (naturalness) 7 17 18 26 38 +0.49
Ours ¿ EVP (emotion) 4 8 22 26 38 +0.87
Ours ¿ Real (lip-sync ) 69 28 3 1 0 −1.64

Ours ¿ Real (visual quality) 33 41 23 2 0 −1.05
Ours ¿ Real (naturalness) 53 38 8 1 0 −1.43
Ours ¿ Real (emotion) 40 38 19 3 1 −1.13

Table 3: Ablation study. We compare visual quality using FID, lip sync with LSE-D/C [25] and emotional
reconstruction with our metrics A/V-EMD. We compare our full model to the same model both without the
GAN loss in the audio-to-expression generator and without the audio conditioned neural texture.

Method LSE-C ↑ LSE-D ↓ FID ↓ A-EMD ↓ V-EMD ↓
Ours 4.431 10.157 13.600 0.069 0.093

Ours w/o GAN loss 4.047 10.446 12.587 0.079 0.090

Ours w/o audio texture 4.175 10.398 15.96 0.069 0.96

Qualitative: Figure 4 shows our results in com-
parison to MEAD [37] and EVP [13]. Our results
show clearly better visual quality than MEAD. Com-
pared with EVP our method is capable of produc-
ing emotion that is much clearer and more closely
matches the real videos, the expanded regions high-
light this. In particular, it can be seen that the eye-
brows convey the target emotion far better in our
method. Additional results can be found in the sup-
plementary video that further demonstrate the ad-
vantages of our method.

User Study: To gauge the subjective quality of
our generated avatars, we conducted a user study.
We selected four subjects and generated five videos
in each of the eight emotions for a total of 40 videos.
The background and pose parameters for these videos

were taken from the longest video of the target emo-
tion in the training set. We conducted our user study
to compare our work to that of MEAD [37], EVP [13]
and the real videos. We perform a two alternative
forced choice study, pairing each of our videos with
its counterpart from the alternatives. The users are
shown both of the videos in a random order, together
with the target emotion. We ask users to select which
of the two videos is better in four categories: lip
sync, visual quality, naturalness and emotional clar-
ity. Users are able to specify if they prefer our video
strongly ++, weakly +, the other video strongly −−
or weakly − or if they find them equal, 0. A to-
tal of 10 users completed the study. The results are
shown in Table 2. Our method strongly outperforms
MEAD across all categories. Compared with EVP,
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Figure 5: The addition of audio conditioning in the
neural texture improves the quality of the resulting
frame, particularly in the mouth interior.

our method is also preferred across all categories.
However, this preference is weaker for lip sync and
natural quality, but much stronger for emotional clar-
ity. The user study shows that our work still does not
reach the quality of real video, suggesting there is still
room for future work.

4.4 Ablation Study

We also perform an ablation study for both the ad-
versarial loss and the audio conditioned neural tex-
ture. The results of this comparison are shown in
Table 3. The inclusion the adversarial loss improves
the lip-sync at the cost of a small loss in visual qual-
ity. We note that the adversarial loss has little ef-
fect on the valence metric, but a stronger effect on
the arousal. We hypothesize that this difference is
due to the fluctuation in the intensity of emotion be-
ing smoothed with a pure regression loss. For the
audio-conditioned neural texture, we compare our
work to a static, neural texture [33]. Our method
improves both the visual quality and lip-sync, with
small improvements in the emotional reconstruction.
As expected, the improvements of our audio condi-
tioning are most notable in the mouth interior. This
is because the audio allows the decoder to disam-
biguate the multiple mouth interiors that could be
represented by the same underlying morphable model
geometry. Figure 5 shows this improvement.

Figure 6: Failure cases of our method. Left & mid-
dle: When the pose of the target video is signifi-
cantly different from the training data, artifacts oc-
cur. Right: When the tracking is inaccurate, our
model produces blurry results.

5 Conclusion

We present a new method for producing audio driven
avatars with control over emotion. We have used
a 3D-based pipeline with the addition of an adver-
sarial loss in the audio-to-expression generator and
an audio-conditioned, resolution independent neural
texture. Our method alleviates the many-to-many
problem in conditioned, audio-driven video genera-
tion and surpasses state-of-the-art for lip sync and
visual quality, as well as emotional reconstruction, as
highlighted by our novel metric. Our comprehensive
solution can be used for diverse applications.

Limitations: Our model sometimes suffers when
using extreme poses (Figure 6). Furthermore, as we
use reference videos to control for pose and back-
ground, length of the generated videos is limited. Fu-
ture work will look to address arbitrary length video
generation, potentially by considering pose genera-
tion. It is also worth investigating other models that
address many-to-many generation, such as diffusion
models [9, 41].

Ethical Implications: The ability to create syn-
thetic digital humans comes with a serious potential
for misuse. In particular, works such as ours could
be altered in order to produce convincing misinfor-
mation. For this reason, we do not make our pipeline
available to the general public. However, we are will-
ing to share code with other researchers.
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Figure 7: Our method allows for fine-grained control on multiple subjects. Here we show two subjects in
with three emotions and three levels of intensity.
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